MyD88 Dependent Signaling Contributes to Protective Host Defense against Burkholderia pseudomallei

نویسندگان

  • W. Joost Wiersinga
  • Catharina W. Wieland
  • Joris J. T. H. Roelofs
  • Tom van der Poll
چکیده

BACKGROUND Toll-like receptors (TLRs) have a central role in the recognition of pathogens and the initiation of the innate immune response. Myeloid differentiation primary-response gene 88 (MyD88) and TIR-domain-containing adaptor protein inducing IFNbeta (TRIF) are regarded as the key signaling adaptor proteins for TLRs. Melioidosis, which is endemic in SE-Asia, is a severe infection caused by the gram-negative bacterium Burkholderia pseudomallei. We here aimed to characterize the role of MyD88 and TRIF in host defense against melioidosis. METHODOLOGY AND PRINCIPAL FINDINGS First, we found that MyD88, but not TRIF, deficient whole blood leukocytes released less TNFalpha upon stimulation with B. pseudomallei compared to wild-type (WT) cells. Thereafter we inoculated MyD88 knock-out (KO), TRIF mutant and WT mice intranasally with B. pseudomallei and found that MyD88 KO, but not TRIF mutant mice demonstrated a strongly accelerated lethality, which was accompanied by significantly increased bacterial loads in lungs, liver and blood, and grossly enhanced liver damage compared to WT mice. The decreased bacterial clearance capacity of MyD88 KO mice was accompanied by a markedly reduced early pulmonary neutrophil recruitment and a diminished activation of neutrophils after infection with B. pseudomallei. MyD88 KO leukocytes displayed an unaltered capacity to phagocytose and kill B. pseudomallei in vitro. CONCLUSIONS MyD88 dependent signaling, but not TRIF dependent signaling, contributes to a protective host response against B. pseudomallei at least in part by causing early neutrophil recruitment towards the primary site of infection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Defense Mechanisms of Hepatocytes Against Burkholderia pseudomallei

The Gram-negative facultative intracellular rod Burkholderia pseudomallei causes melioidosis, an infectious disease with a wide range of clinical presentations. Among the observed visceral abscesses, the liver is commonly affected. However, neither this organotropism of B. pseudomallei nor local hepatic defense mechanisms have been thoroughly investigated so far. Own previous studies using elec...

متن کامل

Neutrophil extracellular traps in the host defense against sepsis induced by Burkholderia pseudomallei (melioidosis)

BACKGROUND Neutrophil extracellular traps (NETs) are a central player in the host response to bacteria: neutrophils release extracellular DNA (nucleosomes) and neutrophil elastase to entrap and kill bacteria. We studied the role of NETs in Burkholderia pseudomallei infection (melioidosis), an important cause of Gram-negative sepsis in Southeast Asia. METHODS In a prospective observational stu...

متن کامل

MyD88-Dependent Signaling Contributes to Host Defense against Ehrlichial Infection

The ehrlichiae are small gram-negative obligate intracellular bacteria in the family Anaplasmataceae. Ehrlichial infection in an accidental host may result in fatal diseases such as human monocytotropic ehrlichiosis, an emerging, tick-borne disease. Although the role of adaptive immune responses in the protection against ehrlichiosis has been well studied, the mechanism by which the innate immu...

متن کامل

A Thrombomodulin Mutation that Impairs Active Protein C Generation Is Detrimental in Severe Pneumonia-Derived Gram-Negative Sepsis (Melioidosis)

BACKGROUND During severe (pneumo)sepsis inflammatory and coagulation pathways become activated as part of the host immune response. Thrombomodulin (TM) is involved in a range of host defense mechanisms during infection and plays a pivotal role in activation of protein C (PC) into active protein C (APC). APC has both anticoagulant and anti-inflammatory properties. In this study we investigated t...

متن کامل

CD14 impairs host defense against gram-negative sepsis caused by Burkholderia pseudomallei in mice.

BACKGROUND CD14 is a pattern-recognition receptor that can facilitate the presentation of bacterial components to either Toll-like receptor 2 (TLR2) or TLR4. We have recently shown that during melioidosis, a severe infection caused by the gram-negative bacterium Burkholderia pseudomallei, TLR2 but not TLR4 impacts the immune response of the intact host in vivo. METHODS The function of CD14 in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2008